Immunoglobulins, also known as antibodies, are heterodimeric proteins made up of two heavy (H) chains and two light (L) chains. They can be classified into five primary isotypes (IgG, IgA, IgD, IgE, and IgM) determined by the constant domains in their H chains, which give each isotype their different characteristics.
Immunoglobulin G is the most abundant subtype, being present in the largest concentrations at 75-80% of IgGs in blood and tissue fluids. IgG makes direct impacts on the immune response with high neutralization and opsonization activities towards toxins and viruses, acting as the first line of defense after memory B cells trigger a response. They are responsible for both existing and acquired immunity against previously encountered antigens. Once IgG binds to antigens, the Fc receptor can bind to macrophages, which can carry out phagocytosis on the intruder.1,2
Uniquely, IgG can also cross the placenta and impart immunity to the fetus. This occurs through transcytosis, in which the IgG is endocytosed and shuttled across the cytoplasm to be secreted towards the basal cell membrane of syncytiotrophoblasts. Once there, the complex is released into fetal circulation.
IgG can be further classified into: IgG1, IgG2, IgG3, and IgG4. All four subtypes exhibit different functional activities. For example, with a HIV patient, IgG3 antibodies have been demonstrated to be more effective at neutralizing HIV over IgG1, likely because of differing antibody flexibility affecting access and how changes are induced in the virus’ oligomer structure.3
At Biointron, we are dedicated to accelerating your antibody discovery, optimization, and production needs. Our team of experts can provide customized solutions that meet your specific research needs. Contact us to learn more about our services and how we can help accelerate your research and drug development projects.
Schroeder, H. W., & Cavacini, L. (2010). Structure and Function of Immunoglobulins. The Journal of Allergy and Clinical Immunology, 125(2 0 2), S41. https://doi.org/10.1016/J.JACI.2009.09.046
Borad, S. G., & Singh, A. K. (2022). Immunoglobulins. Encyclopedia of Dairy Sciences, 894–900. https://doi.org/10.1016/B978-0-12-818766-1.00367-6
Ciobanu, A. M., Dumitru, A. E., Gica, N., Botezatu, R., Peltecu, G., & Panaitescu, A. M. (2020). Benefits and Risks of IgG Transplacental Transfer. Diagnostics, 10(8). https://doi.org/10.3390/DIAGNOSTICS10080583
Antibody specificity refers to an antibody's ability to selectively bind to a unique epitope on a target antigen while avoiding interactions with unrelated antigens. This property arises from the highly specialized antigen-binding site located in the variable region of the antibody, which determines its unique binding characteristics.
Antibody affinity refers to the strength of the binding interaction between a single antigen epitope and the paratope (binding site) of an antibody. This interaction is a fundamental measure of how well an antibody recognizes its specific antigen target.
Recombinant antibodies are produced using genetic engineering techniques, unlike traditional antibody production, where the immune system generates antibodies without direct control over their sequence. By introducing genes encoding antibody fragments into host cells, such as bacteria or mammalian cells, recombinant antibodies can be expressed, purified, and deployed for applications including research, diagnostics, and therapeutics.
Recombinant antibody expression is a biotechnological process that involves engineering and producing antibodies outside their natural context using recombinant DNA technology.