サポート ブログ Technological Innovations in Antibody Production

Technological Innovations in Antibody Production

Biointron 2024-02-16 Read time: 3 mins
biot202200428-gra-0001-m-transformed.jpg
Electrofusion Technology. Image credit: 10.1002/biot.202200428

The field of antibody production has witnessed significant technological advancements over the past years, particularly in hybridoma technology, which remains a cornerstone for monoclonal antibody (mAb) production.

Electrofusion Technology in Hybridoma Preparation

Electrofusion technology can be applied as a cell engineering technique for hybridoma preparation. This method offers substantial improvements in efficiency and control over traditional polyethylene glycol-mediated cell fusion. Electrofusion involves electric field intensity, number of pulses, and pulse duration. However, key challenges in adopting electrofusion include selecting appropriate instruments, optimizing electrical parameters, and precisely controlling cell conditions. Despite this, electrofusion represents a promising advancement for enhancing the specificity and yield of monoclonal antibodies.1

Hybridoma Cell Screening and Expansion

The process of generating monoclonal antibodies through hybridoma technology involves screening hybridoma cells to select those producing the desired antibodies. This is typically achieved using enzyme-linked immunosorbent assay (ELISA) techniques, among others, to identify antibodies with the right specificity. Following screening, hybridomas that produce the desired antibodies are cloned and propagated to obtain stable cell populations for large-scale antibody production. This expansion can be performed either in vitro, using tissue culture techniques, or in vivo, by inoculating hybridoma cells into the abdomen of a mouse. However, the technology is not without limitations, such as long production times, resource-intensive processes, susceptibility to contamination, and challenges in generating short peptides and fragment antigens.

Clinical Significance and Applications

Hybridoma technology's clinical significance is vast, providing monoclonal antibodies for various diagnostic tests, cancer treatments, and research applications. The specificity and reliability of monoclonal antibodies produced via hybridoma technology have made it an indispensable tool in the diagnosis and treatment of numerous diseases. This technology enables the production of antibodies for detecting foreign antigens, identifying different strains of pathogens, and even treating viral diseases such as AIDS. Moreover, monoclonal antibodies are instrumental in radioimmunodetection and radioimmunotherapy of cancer, highlighting their critical role in modern medicine.2 Biointron offers hybridoma sequencing services for antibody discovery and production.


References

  1. Kou, J., Shen, J., Wang, Z., & Yu, W. (2023). Advances in hybridoma preparation using electrofusion technology. Biotechnology Journal, 18(10), 2200428. https://doi.org/10.1002/biot.202200428

  2. Mitra, S., & Tomar, P. C. (2021). Hybridoma technology; advancements, clinical significance, and future aspects. Journal of Genetic Engineering and Biotechnology, 19(1), 1-12. https://doi.org/10.1186/s43141-021-00264-6

Subscribe to our ブログ

Recent ブログ

Antibody specificity refers to an antibody's ability to selectively bind to a unique epitope on a target antigen while avoiding interactions with unrelated antigens. This property arises from the highly specialized antigen-binding site located in the variable region of the antibody, which determines its unique binding characteristics.

Dec 20, 2024
ブログ

Antibody affinity refers to the strength of the binding interaction between a single antigen epitope and the paratope (binding site) of an antibody. This interaction is a fundamental measure of how well an antibody recognizes its specific antigen target.

Dec 20, 2024
ブログ

Recombinant antibodies are produced using genetic engineering techniques, unlike traditional antibody production, where the immune system generates antibodies without direct control over their sequence. By introducing genes encoding antibody fragments into host cells, such as bacteria or mammalian cells, recombinant antibodies can be expressed, purified, and deployed for applications including research, diagnostics, and therapeutics.

Dec 19, 2024
ブログ

Recombinant antibody expression is a biotechnological process that involves engineering and producing antibodies outside their natural context using recombinant DNA technology.

Dec 19, 2024
ブログ

お客様の利便性を向上させるためにクッキーを使用しています。詳しくは プライバシーポリシー をご覧ください。