サポート ブログ The Emergence and Evolution of scFvs

The Emergence and Evolution of scFvs

Biointron 2024-05-14 Read time: 4 mins
scFv.jpg
The differences of scFv and nanobody in structure. DOI: 10.1186/s40364-021-00332-6

Antibody engineering has significantly advanced with the development of various formats that enhance therapeutic efficacy and diagnostic precision. Single-chain variable fragments (scFvs) represent one of these innovative formats. Consisting only of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulins linked by a short peptide, scFvs maintain the antigen-binding ability of the parent antibody. Being 25-30 kDa in size, they are significantly smaller than a full antibody. The design of the linker is critical as it influences the stability and the binding affinity of the scFv. 

scFvs were first conceptualized and developed in the late 1980s as researchers sought to create more manageable antibody fragments for therapeutic use. These fragments were designed to overcome the limitations posed by the size and complexity of conventional monoclonal antibodies, making them suitable for applications where size and penetration into tissues are crucial. 

Timeline 

1988: A paper by Huston et al. demonstrated the design of an engineered scFv with a single polypeptide connected with a 15 amino acid linker. It showed clear specificity against digoxin, with recovery of activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli.1

1990s: Refinement of scFv technology addressed issues such as stability and solubility. There was also increasing interest in potential applications in diagnostics and therapeutics. Cheadle et al. cloned and expressed the Fv portion of a mouse myeloma protein, which was found to be biologically active with an identical affinity as that of the native Fv.2

Early 2000s: Growing use of scFvs in diagnostic applications, including immunoassays and imaging, in addition to therapeutic purposes, especially in cancer targeting. 

Mid-2000s: Introduction of bispecific scFvs, capable of binding two different antigens simultaneously. 

2010s - Present: scFvs began entering clinical trials for therapeutic applications, with ongoing research to improve stability, bioavailability, and reduce potential immunogenicity.

Altogether, scFvs have gained significant importance with applications spanning preclinical, clinical, and research domains. Progress in antibody engineering has enabled the creation of highly customized scFvs, boasting enhanced pharmacokinetic traits, thus greatly enhancing their clinical significance. 


References

  1. Huston, J. S., Levinson, D., Tai, M. S., Novotný, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., & Crea, R. (1988). Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proceedings of the National Academy of Sciences, 85(16), 5879-5883. https://doi.org/10.1073/pnas.85.16.5879

  2. Cheadle, C., Hook, L. E., Givol, D., & Ricca, G. A. (1992). Cloning and expression of the variable regions of mouse myeloma protein MOPC315 in E. Coli: Recovery of active FV fragments. Molecular Immunology, 29(1), 21-30. https://doi.org/10.1016/0161-5890(92)90152-N

  3. María, R., Irene, E., Fernando, L., & Alfredo, A. (2022). Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers, 14(17), 4206. https://doi.org/10.3390/cancers14174206

Subscribe to our ブログ

Recent ブログ

DOI: 10.3389/fbioe.2022.856049Antibodies have become essential tools for the diagnosis and treatment of numerous human diseases. However, non-human antibodies, such as those derived from murine sources, often provoke human anti-mouse antibody (HAMA) responses. This immunogenicity leads to rapid clea

May 30, 2025
ブログ

In therapeutic antibody development, achieving high-affinity antigen binding is central to improving drug efficacy, durability, and safety.Biointron’s High-Throughput Fully Human Antibody Discovery service is designed to meet this need by integrating advanced screening and engineering technol

May 28, 2025
ブログ

I. Introduction to Hybridoma TechnologyHybridoma technology, developed by Köhler and Milstein in 1975, is a foundational method for producing monoclonal antibodies (mAbs). The approach involves fusing antibody-producing B lymphocytes with immortal myeloma cells to form hybridoma cells. These hybrid

May 26, 2025
ブログ

Introduction to Monoclonal Antibody Discovery Monoclonal antibodies (mAbs) are one of the most successful classes of biologic drugs on the global pharmaceutical market. Since the approval of Orthoclone OKT3 in 1986, over 100 mAbs have been approved by the U.S. FDA for indications incl

May 23, 2025
ブログ

お客様の利便性を向上させるためにクッキーを使用しています。詳しくは プライバシーポリシー をご覧ください。