サポート ブログ Antibody Engineering: From Bispecifics to Humanization

Antibody Engineering: From Bispecifics to Humanization

Biointron 2024-01-20 Read time: 3 mins
engineering.jpg
Image credit: DOI: 10.1016/S1016-8478(23)25245-0

Antibody engineering has made remarkable advancements since the invention of hybridoma technology in 1975 by Köhler and Milstein, leading to the creation of therapeutic agents that exhibit high specificity and reduced adverse effects.  

Bispecifics 

Immunoglobulin G (IgG), the most common type of antibody found in blood circulation, is monospecific and recognizes only a single antigen, with the exception of IgG4. In contrast, bispecific antibodies are designed to recognize and bind to two different targets. This is useful as a therapeutic as it can be designed to redirect, for instance, immune cells such as T cells, to selectively engage and eliminate target tumor cells. In addition, bispecific antibodies can assist in the delivery of therapeutic payloads, such as toxins or drugs, to specific sites in the body.1

Fc engineering 

The antibody’s Fc region has been shown to mediate effector functions such as ADCC and CDC, which can significantly affect therapeutic effectiveness. Antibody dependent cell mediated cytotoxicity (ADCC) occurs when antibody-opsonized target cells activate Fc gamma receptors on the surface of macrophages to induce phagocytosis. Complement-dependent cytotoxicity (CDC) results from the C1q protein binding to the Fc region which are in turn bound to a cell surface antigen, thus inducing cell death. These Fc-dependent effector functions are continuously being fine-tuned to increase the potency of antibodies.2

Humanization 

The humanization of antibodies is a method to reduce the immunogenicity of antibodies from non-human species. It is typically used to develop monoclonal antibodies for human administration, by modifying protein sequences to increase similarity to antibody variants produced naturally in humans. At first, genetic engineering was used to generate chimeric antibodies, which contained human constant domains and as well as non-human variable domains to retain specificity. Humanized antibodies were then created by grafting antibody complementarity-determining regions from the non-human antibody onto a human variable region framework.3

At Biointron, we offer high-quality recombinant antibody production services that can help researchers and biotech companies develop antibody-based drugs for various diseases. Our team of experts can provide customized solutions that meet your specific research needs. Contact us to learn more about our services and how we can help accelerate your research and drug development projects.


References:

  1. Yélamos, J. (2022). Current innovative engineered antibodies. International Review of Cell and Molecular Biology, 369, 1-43. https://doi.org/10.1016/bs.ircmb.2022.03.007 

  2. Moore, G. L., Chen, H., Karki, S., & A, G. (2010). Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs, 2(2), 181-189. https://doi.org/10.4161/mabs.2.2.11158 

  3. Waldmann H. (2019). Human Monoclonal Antibodies: The Benefits of Humanization. Methods in molecular biology (Clifton, N.J.), 1904, 1–10. https://doi.org/10.1007/978-1-4939-8958-4_1 


Subscribe to our ブログ

Recent ブログ

The therapeutic efficacy of antibodies is closely related to their ability to recognize and bind specific epitopes on target antigens. Epitopes, or antigenic determinants, are a group of amino acids or other chemical groups that are part of a molecule to which an antibody attaches itself. Epitope characterization can help reveal the mechanism of antibody binding and apply intellectual property (patent) protection for novel antibodies, in addition to designing antibodies with high specificity and minimal cross-reactivity.

Jul 12, 2024
ブログ

Understanding the differences between antibody specificity and selectivity is essential for designing and interpreting antibody-based assays in research for experimental accuracy and data interpretation. Antibody specificity refers to an antibody's ability to recognize and bind to a particular epitope—a unique part of an antigen that elicits an immune response.

Jul 10, 2024
ブログ

Antibody-based assays are essential tools in biomedical research, providing the means to detect, quantify, and visualize specific proteins or antigens within complex biological samples. These assays' efficacy hinges on the antibodies' precise properties. While affinity, avidity, specificity, and selectivity are fundamental to antibody performance, the ultimate impact of these properties is heavily influenced by the experimental context in which the antibody is employed.

Jul 08, 2024
ブログ

Biologics, particularly antibodies, have become indispensable in biomedical research and therapeutic development. Research-use-only (RUO) biologics play a pivotal role in preclinical studies, providing researchers with the necessary tools to explore antibody functions and therapeutic potential in vivo.

Jul 04, 2024
ブログ

お客様の利便性を向上させるためにクッキーを使用しています。詳しくは プライバシーポリシー をご覧ください。