サポート ブログ Human Anti-Mouse Antibodies (HAMA) Response

Human Anti-Mouse Antibodies (HAMA) Response

Biointron 2024-01-20 Read time: 3 mins
Hama.jpg
Image credit: DOI: 10.1016/j.atherosclerosis.2013.01.044

In antibody research, the use of mouse models is a key component in several discovery and production processes. For instance, when developing murine monoclonal antibodies, spleen cells of an antigen-exposed mouse are fused to human or mouse myeloma cells, which create the hybridomas needed to produce the desired single antibody clones. 

The HAMA response occurs when the human immune system produces antibodies against mouse immunoglobulins or other mouse-derived proteins. When mice are used in research, human subjects (such as patients in clinical trials or individuals exposed to mouse-derived reagents) may develop HAMA due to their exposure to mouse antigens, interfering with therapeutic efficacy. This immune response can occur even after a single exposure and can persist for an extended period, with responses ranging from a mild rash to a life-threatening kidney failure. 

To minimize the effect of HAMA on scientific research, researchers can employ several strategies: 

  1. Humanized Antibodies: Using humanized or fully human antibodies in research and clinical applications can mitigate the risk of HAMA response. These antibodies are designed to have minimal or no mouse-derived components, reducing the chances of immunogenicity in human subjects. 

  2. HAMA Testing and Monitoring: Determining baseline HAMA levels prior to initiation of therapy with murine-derived proteins can help to adjust dosages, interpret results accurately, and tailor treatment approaches accordingly. 

  3. Quality Control Measures: Implementing stringent quality control measures during the production and validation of mouse-derived proteins can help minimize potential HAMA-related issues.  

  4. Selection of Alternative Animal Models: Researchers can explore alternative animal models that are less likely to trigger the HAMA response. For instance, the use of in vitro techniques such as the production of recombinant monoclonal antibodies would prevent any issues.

At Biointron, we are dedicated to accelerating your antibody discovery, optimization, and production needs. Our team of experts can provide customized solutions that meet your specific research needs. Contact us to learn more about our services and how we can help accelerate your research and drug development projects.

Subscribe to our ブログ

Recent ブログ

The therapeutic efficacy of antibodies is closely related to their ability to recognize and bind specific epitopes on target antigens. Epitopes, or antigenic determinants, are a group of amino acids or other chemical groups that are part of a molecule to which an antibody attaches itself. Epitope characterization can help reveal the mechanism of antibody binding and apply intellectual property (patent) protection for novel antibodies, in addition to designing antibodies with high specificity and minimal cross-reactivity.

Jul 12, 2024
ブログ

Understanding the differences between antibody specificity and selectivity is essential for designing and interpreting antibody-based assays in research for experimental accuracy and data interpretation. Antibody specificity refers to an antibody's ability to recognize and bind to a particular epitope—a unique part of an antigen that elicits an immune response.

Jul 10, 2024
ブログ

Antibody-based assays are essential tools in biomedical research, providing the means to detect, quantify, and visualize specific proteins or antigens within complex biological samples. These assays' efficacy hinges on the antibodies' precise properties. While affinity, avidity, specificity, and selectivity are fundamental to antibody performance, the ultimate impact of these properties is heavily influenced by the experimental context in which the antibody is employed.

Jul 08, 2024
ブログ

Biologics, particularly antibodies, have become indispensable in biomedical research and therapeutic development. Research-use-only (RUO) biologics play a pivotal role in preclinical studies, providing researchers with the necessary tools to explore antibody functions and therapeutic potential in vivo.

Jul 04, 2024
ブログ

お客様の利便性を向上させるためにクッキーを使用しています。詳しくは プライバシーポリシー をご覧ください。